Initialization of neural networks by means of decision trees
نویسندگان
چکیده
Performance of neural-networks learning is known to be sensitive to the initial weight setting and architecture|number of hidden layers and neurons in these layers. This shortcoming can be alleviated if some approximation of the target concept in terms of a logical description is available. The paper reports a successful attempt to initialize neural networks by decision-tree generators. The system TBNN (tree-based neural net) compares very favourably to other learners in terms of classiication accuracy on unseen data and is also computationally less demanding than the backpropagation algorithm applied to a randomly initialized multilayer perceptron. The behavior of the system is rst studied on specially designed artiicial data. Then, its performance is demonstrated by a real-world application.
منابع مشابه
Initialization of adaptive parameters in density networks
Initialization of adaptive parameters in neural networks is of crucial importance to the speed of convergence of the learning procedure. Methods of initialization for the density networks are reviewed and two new methods, based on decision trees and dendrograms, presented. These two methods were applied in the Feature Space Mapping framework to artificial and real world datasets. Results show s...
متن کاملDeep Jointly-Informed Neural Networks
In this work a novel, automated process for determining an appropriate deep neural network architecture and weight initialization based on decision trees is presented. The method maps a collection of decision trees trained on the data into a collection of initialized neural networks, with the structure of the network determined by the structure of the tree. These models, referred to as “deep jo...
متن کاملText Categorization Using Neural Networks Initialized with Decision Trees
Text categorization – the assignment of natural language documents to one or more predefined categories based on their semantic content – is an important component in many information organization and management tasks. Performance of neural networks learning is known to be sensitive to the initial weights and architecture. This paper discusses the use multilayer neural network initialization wi...
متن کاملProvide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملESTIMATING THE VULNERABILITY OF THE CONCRETE MOMENT RESISTING FRAME STRUCTURES USING ARTIFICIAL NEURAL NETWORKS
Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vuln...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 8 شماره
صفحات -
تاریخ انتشار 1995